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Abstract

The inaccuracies of Pitot or impact tubes for the measurement of low fluid velocities have been demonstrated by several experimental
investigations. However, owing to considerable data scatter, there does not exist a definitive criterion for establishing when these instru-
ments are inaccurate with respect to low velocities. It is not that the instruments themselves are faulty, but rather that the methodology
for extracting velocity information from the measured pressures fails. The standard method for extracting velocities from the pressure
data is the application of Bernoulli’s equation. That equation is, however, based on an inviscid model. At low Reynolds numbers, the
viscosity exerts a strong effect on the flow pattern and, thereby, invalidates the use of the Bernoulli equation. In the present investigation,
a painstaking numerical simulation has been performed to establish criteria at which the Bernoulli interpretation of Pitot/impact tube
data is not valid. Two types of nose pieces for Pitot/impact tube were investigated. One of these is a hemispherical nose, while the other is
a flat-faced nose. It was found that for the former, the Bernoulli interpretation should not be used when qU1Router/l < 45, while for the
latter, the corresponding criterion is qU1Router/l < 65. These values correspond to a 2% error in the pressure coefficient cp and a 1%
error in the value of the extracted velocity measurement.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Although the Pitot tube was invented in 1732, its useful-
ness as a tool for the determination of fluid velocities has
been extended in recent times by the advent of electronic
pressure transducers and micromanometers. In particular,
such transducers have enabled the accurate reading of
small pressure differences and, furthermore, have facili-
tated the use of automatic data acquisition systems for
measurements obtained by the use of Pitot or impact tubes.

The accuracy of velocities which correspond to small
pressure differences measured by means of a Pitot/impact
tube was first considered by Fry and Tyndall [1]. Their
work was not definitive owing to the inadequacy of the
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available instrumentation and to the lack of understanding
of the role of the Reynolds number as a measure of the
importance of viscous effects. The first definitive experi-
ments were those performed by Barker [2]. These experi-
ments demonstrated that the standard procedure for
interpreting Pitot-tube measurements is prone to error at
low Reynolds numbers.

This issue is a matter of fluid-flow fundamentals rather
than the accuracy of pressure measurements themselves.
The common approach to the evaluation of velocities from
Pitot-tube measurements is the use of Bernoulli’s equation.
Among other restrictions on the use of Bernoulli’s equa-
tion, one is that viscous effects are negligible. It is known,
however, that external flows at low Reynolds numbers
are substantially affected by viscosity [3]. Since the flow
about a Pitot tube is an external flow, it is reasonable to
expect that viscosity would also assert itself at Pitot-tube
Reynolds numbers that are small. Consequently, the
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Nomenclature

cp pressure coefficient, Eq. (5)
D outside diameter of Pitot/impact tube
d diameter of aperture in Pitot/impact tube
L length of truncated Pitot/impact tube
‘ length of aperture
p pressure
p1 far-field pressure
Router outside radius of Pitot/impact tube
Re Reynolds number, qU1D/l or qU1Router/l
r radial coordinate

U1 far-field velocity
u axial component of velocity
v radial component of velocity
x axial coordinate
l viscosity
q density

Superscript
0 denotes non-dimensional variable
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validity of the use of Bernoulli’s equation for interpreting
low Reynolds number, Pitot-tube data is questionable.

Barker’s experiments were performed using water as the
participating fluid and with the Pitot tube situated at the
centerline of a round pipe. Furthermore, the Pitot tube
was not equipped with static holes; that is, this type of Pitot
tube is more properly characterized as a blunt-nosed
impact tube. The static pressure was measured at the wall
of the pipe. Barker’s work demonstrated the inadequacy
of the Bernoulli model for flows with Reynolds numbers
below a threshold value. The errors in Pitot-tube velocity
determinations due to the inadequacy of the Bernoulli
model have been ascribed to the Barker effect.

Chronologically, the next experimental study of the Bar-
ker effect is that of Homann [4]. The Homann data were
extended to much lower Reynolds numbers than those of
Barker, thereby accentuating the Barker effect. On the
other hand, in Homann’s comparison of his data with
those of Barker, it appears that the illustrated good agree-
ment was due to plotting errors. In their investigation of
the Barker effect, Hurd et al. [5] used an apparatus which
was, in essence, a towing tank with a blunt-nosed impact
tube moving through an otherwise stationary liquid. Those
investigators confirmed the existence of the Barker effect
but were critical of Barker’s experimental technique
because of alleged distortions of the velocity profile in the
pipe in which the impact tube was situated. MacMillan
[6] investigated the Barker effect for a blunt-nosed impact
tube situated at the centerline of a developing laminar air-
flow in a circular tube. Macmillan compared his results
with those of Barker and exposed a seeming ambiguity in
the definition of Barker’s Reynolds number. That ambigu-
ity arose from a less-than-precise specification of whether
Barker’s indicated tube radius was either an external or
internal dimension.

Another experimental study of possible relevance to the
Barker effect was that of Sherman [7]. These experiments
involved the use of two different geometries for the nose-
pieces of the investigated impact tubes. One of these is a
rounded nose, termed source-shaped by Sherman. The
other is a blunt-faced tube whose walls were tapered to a
zero thickness at their most forward edge.
With regard to analysis, both Zahm [8] and Homann [9]
studied the stagnation pressure at the forward edge of a
solid sphere situated in uniform flow. Similarly, Lin and
Schaaf [10] analyzed the stagnation point of a hemisphere.
Neither of these works is actually relevant to the Barker
effect because of the absence of an impact opening. An
attempt was reported by Lester [11] in 1960 to apply
numerical methods to the analysis of the Barker effect.
The physical situation chosen for analysis was that of a
blunt impact tube situated at the centerline of the fully
developed laminar flow in a pipe. Since this attempt at a
numerical solution was made prior to the advent of modern
digital computers, it was burdened with necessary simplify-
ing assumptions. Furthermore, the vorticity-streamfunc-
tion formulation was used, necessitating approximations
in the vorticity boundary conditions. The solutions
obtained by Lester were too limited to enable the identifi-
cation of the threshold value at which the Bernoulli data
analysis is inapplicable.

A review article dealing with the Barker effect was pre-
pared by Chue [12]. That review does not provide any
information that is not covered in the preceding para-
graphs.

2. Description of the physical problem

As was described in the foregoing literature review, there
is a substantial amount of experimental data which have
established the existence of the Barker effect. However, as
will be demonstrated later, there is so much scatter among
the data that it is not possible to identify the threshold Rey-
nolds number at which the Barker effect first asserts itself.
Furthermore, as was also documented in the discussion of
the literature, there appears not to have been a definitive
numerical simulation of the fluid dynamics of Pitot and
impact tubes. It is the objective of this work to provide
such a definitive simulation and to identify quantitatively
the onset of the Barker effect.

The geometries of the investigated Pitot/impact tubes
are those of commonly available commercial instruments
in the United States. Two types of nose geometries were
investigated. One of these is a hemispherical nosepiece,



Fig. 1. Schematic of a hemispherical nosepiece attached to the body of a
Pitot/impact tube.
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Fig. 3. The solution domain.
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and the second is a blunt-faced nosepiece. Both of these
nosepieces had a center-hole aperture whose diameter
was commensurate with those of commercial instruments.
In view of the principle of geometrical similarity, it was
not necessary to work with actual dimensions. Rather, only
dimension ratios had to be specified.

Schematic diagrams of the Pitot/impact tubes to be
studied here are presented in Figs. 1 and 2, respectively,
for the hemispherical nosepiece and the blunt-faced nose-
piece. As seen in Fig. 1, the simulation model encompassed
only the front portion of the Pitot/impact tube. The axial
length of the investigated model was demonstrated by sup-
plementary calculations to be long enough so that the use
of a greater length would not affect the flow pattern in
the neighborhood of the nose. Similarly, the impact open-
ing was truncated at a length sufficiently great so that no
alteration would occur in the flow pattern if a greater
length were to be used. In this regard, it may be recalled
that there is no net flow into or out of the impact opening
when steady-state measurements are being made. For the
simulation, the ratios L/D = 10 and l/d = 10 were
employed. From careful measurements of several commer-
cially available Pitot tubes, it was found that d/D = 0.31
was an appropriate description of the impact aperture.

The simulation geometry for the case of the blunt-faced
Pitot/impact tube is illustrated in Fig. 2. As can be seen
d
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Fig. 2. Schematic of a blunt-faced nosepiece attached to the body of a
Pitot/impact tube.
from a comparison of Figs. 1 and 2, the geometries of
the two types of tubes are the same, except for the rounding
of the nose in Fig. 1 and the squaring-off of the nose in
Fig. 2.

In the numerical simulation of any external flow, the
selection of the size of the solution domain is of major
importance. In general, solutions are sought that are inde-
pendent of the size of the solution domain. This require-
ment is especially important in the present situation
because the viscous effects cause the fluid–solid interactions
to extend forward of the nose of the Pitot/impact tube.

The solution domain that was utilized for the final com-
putations, shown in Fig. 3, was selected on the basis of sev-
eral preliminary computer runs. Each of the boundaries is
labeled according to their function. At the inflow bound-
ary, a uniform freestream velocity U1 was imposed, while
at the symmetry boundary, all normal derivatives are zero
and no flow is permitted to pass perpendicular to the
boundary. At the downstream end of the solution domain,
typical outflow boundary conditions are imposed. These
include zero values of the streamwise first derivatives of
all of the dependent variables. The upper boundary of
the solution domain is treated as a far-field boundary. At
such a boundary, the direction at which the flow crosses
the boundary is unknown. The software determines the
flow direction along such a boundary. The inflow boundary
was positioned 20D upstream of the forward edge of the
Pitot/impact tube nose, and the outflow boundary was sim-
ilarly placed downstream of the trailing edge of the trun-
cated tube. Similarly, the far-field boundary was placed
at a radial distance of 20D from the centerline of the tube.

3. The governing equations

The analysis of the fluid flow was based on an axisym-
metric model based on x, r cylindrical coordinates. In view
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of the focus of the work on very slow flows, the use of a
laminar flow model was appropriate. The full Navier–
Stokes equations were solved for incompressible, con-
stant-property flow. It was found advantageous to perform
the solutions in terms of dimensionless variables. To this
end, let

u0 ¼ u
U1

; v0 ¼ v
U1

; p0 ¼ p

qU 2
1
;

x0 ¼ x
D
; r0 ¼ r

D
; Re ¼ qU1D

l

ð1Þ

Once the transformation of coordinates and variables has
been made, it is convenient to drop the primes. In terms
of the transformed quantities, the governing equations are

Mass conservation
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Inspection of Eqs. (2)–(4) indicates that the only specifiable
parameter is the Reynolds number based on the outer
diameter of the Pitot/impact tube. It is not necessary to
specify a particular fluid or to give values for any fluid
properties.
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Fig. 4. Low Reynolds number deviations from the B
Eqs. (2)–(4) were solved making use of FLUENT finite-
volume-based software. The solution domain was discret-
ized into 50,877 brick-form elements for the blunt-faced
model, and 69,918 brick-form elements for the hemispher-
ical-nosed-model. The accuracy of each solution was veri-
fied to be mesh-size independent. The actual calculations
were performed using an IBM SP2 supercomputer.

The key result that was sought is the pressure difference
between the upstream freestream and the stagnation point
at the mouth of the Pitot/impact tube. This result is to be
presented in dimensionless form as a pressure coefficient
cp defined as

cp ¼
pstag � p1

1
2
qU 2

1
ð5Þ

For ordinary flows, the value of cp for the Pitot/impact tubes
is 1.0 according to Bernoulli’s equation. However, for slow
flows, cp may exceed 1.0 owing to the effect of viscosity.
One of the goals of this research is to identify the value of
the Reynolds number below which it is not correct to use
cp = 1.0 in interpreting Pitot/impact tube measurements.
4. Results and discussion

4.1. Threshold Reynolds number for Pitot/impact tube errors

The result of most direct practical importance is the
threshold Reynolds number at which the standard Ber-
noulli-based interpretation of Pitot/impact tube data ceases
to be applicable. The deviations from the Bernoulli-based
model are presented in Fig. 4. In that figure, the pressure
coefficient cp, defined by Eq. (5), is plotted as a function
60 70 80 90 100 110

nt-nosed

ispherical-nosed

ernoulli-based Pitot/impact tube model cp = 1.
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of the Reynolds number of the Pitot/impact tube. Special
note should be taken of the definition of the Reynolds
number which appears on the abscissa of the figure. That
Reynolds number is based on the outside radius Router of
the tube. This practice is used here because it is the tradi-
tional way for presenting Pitot/impact tube data.

Observation of Fig. 4 indicates that for the Reynolds
range investigated, cp > 1. In general, the lower the Rey-
nolds number, the higher the value of cp. On the other
hand, cp approaches 1 at sufficiently high values of the Rey-
nolds number. For practical purposes, it is reasonable to
define the threshold of deviations from the standard
Bernoulli interpretation in terms of an acceptable level of
accuracy in the velocity determination. The writers have
selected the threshold as corresponding to

cp ¼ 1:02 ð6Þ

This 2% deviation of cp from unity corresponds to an error
of 1% in the velocity determination. For practical pur-
poses, this is believed to be a viable definition of the onset
of non-Bernoulli effects.

Further inspection of the figure reveals the following
threshold Reynolds numbers for the two types of Pitot/
impact tube geometries:

Rethreshold ffi 65 for the blunt-faced tube ð7Þ
Rethreshold ffi 45 for the hemispherical-nosed tube ð8Þ

At a Reynolds number of approximately 10, the value of cp

is about 1.1, which corresponds to an error of 5% if the
Bernoulli model were used in the determination of the
velocity.
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Fig. 5. Compilation for all available
4.2. Collection of all available information relating

to the Barker effect

It is relevant to bring together all of the prior informa-
tion, both experimental and analytical-numerical, to place
the present results in the context of the history of the Bar-
ker effect. To this end, Fig. 5 has been prepared. The figure
displays six sets of experimental data as well as five analyt-
ical and numerical contributions. As was noted in the
introduction, Barker’s data constitute the first serious
attempt at quantifying the domain in which the standard
Bernoulli-based interpretation of Pitot/impact tube data
fails. As can be seen from Fig. 5, there is considerable scat-
ter among the Barker data, in all likelihood due to the
insufficiency of the instrumentation. The second experi-
mental contribution, that due to Homann, presents a
dilemma. In Homann’s paper, his data seem to fall among
a scatter-free rendering of Barker’s data. On the other
hand, that rendering appears to be a misrepresentation of
the actual Barker data. Furthermore, Homann indicates
that both his data and Barker’s data lie along an analytical
characterization of the pressure coefficient for a sphere
without an aperture [8]. That characterization is, however,
clearly incorrect as will be demonstrated shortly.

The data of Hurd, et al., Sherman, and MacMillan were
reported at virtually the same time. Hurd’s and Sherman’s
(flat-nosed) data are qualitatively reinforcing, while Mac-
Millan displays the minimum viscous effects among all of
the information exhibited in Fig. 5. The results of the pres-
ent numerical simulation appear to fit satisfactorily with
both Hurd’s and Sherman’s (flat-nosed) data.

With regard to the analytical and numerical results,
those of Lin and Schaaf, Homann, and Zahm are not really
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appropriate to the Pitot/impact tube situation in that they
did not consider any impact opening aperture. Further-
more, a comparison of the Homann and Zahm results,
both purported to apply to a sphere, shows considerable
disagreement. It is the view of the present authors that
Zahm’s result is in error. The only other numerical work
that has heretofore been available is that of Lester. It is
remarkable that despite the absence of computational
resources and the concomitant need for simplifying
assumptions, Lester’s results appear to be a reasonable
extension of those obtained here.

4.3. Streamline patterns adjacent to the nose

of the Pitot/impact tube

To provide further understanding of the causes of the
Barker effect, it is relevant to examine the streamline pat-
tern adjacent to the nose of the Pitot/impact tubes that
were studied here. In addition to the two nose geometries,
the variation of the streamline pattern with the Reynolds
number is also relevant.
Fig. 6. Streamline patterns adjacent to a blunt-faced nose: (a)
qU1Router/l = 10 and (b) qU1Router/l = 96.
Fig. 6 has been prepared to illustrate the streamline pat-
terns for the case of the blunt-faced nose. Part (a) of the fig-
ure corresponds to qU1Router/l = 10, while part (b) is for
qU1Router/l = 96. The pictured streamlines correspond to
dimensionless values that are identical for the two figures.
Inspection of Fig. 6(a) reveals that the nose-adjacent
streamline begins to turn earlier to escape the blockage
due to the tube’s presence than does the corresponding
streamline in Fig. 6(b). This observation indicates that
the precursive effect due to viscosity extends farther
upstream for the lower Reynolds number flow than for
the higher Reynolds number flow.

A similar exposition is presented in Fig. 7 for the case of
the hemispherical-nosed Pitot/impact tube. Once again,
parts (a) and (b) correspond, respectively, to Reynolds
numbers of 10 and 96. These figures display a streamline
pattern that is generally similar to those of Fig. 6 for the
case of the flat-nosed tube. For the lower Reynolds number,
Fig. 7(a), the nose-adjacent streamline begins to turn away
from its straight path at a greater distance from the nose
than for the case of the higher Reynolds number, Fig. 7(b).
Fig. 7. Streamline patterns adjacent to a hemispherical nose: (a)
qU1Router/l = 10 and (b) qU1Router/l = 96.
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Figs. 6 and 7 display only a portion of the flow field that
was provided by the numerical simulations. A careful
examination of the entire flow field (not shown here) clearly
indicates that the size of the solution domain was prop-
erly chosen sufficiently large to assure results of high
accuracy.

5. Concluding remarks

This investigation was undertaken to provide a defini-
tive conclusion to an important problem in fluid flow mea-
surement which has been characterized by a considerable
degree of disorder (Fig. 5) in the past. The data identifying
the viscous-related errors in the measurement of low fluid
velocities by Pitot/impact tubes were collected in six indi-
vidual experimental investigations, the first being that of
Barker in 1922. The viscous-driven presence of a precursive
extension of the flow field upstream of the nose of the tube
serves to invalidate the standard Bernoulli equation inter-
pretation of Pitot/impact tube data. The threshold at which
the Bernoulli interpretation first fails has not been estab-
lished in any reliable manner in the past, especially because
of considerable scatter in the experimental data.

The analytical contributions to the subject have been
primarily for nosepieces that do not have an impact aper-
ture. The absence of such an aperture means that the
results for these models do not apply directly to Pitot/
impact tubes. The one attempt at numerical simulation of
the problem was carried out at a time when the available
computational assets were minimal, so that it was neces-
sary to make a considerable number of simplifying assump-
tions to implement the numerical work.

As a consequence, a definitive criterion for the break-
down of the Bernoulli interpretation has been absent. Such
a criterion has been obtained here from detailed numerical
simulations of the flow about Pitot/impact tubes equipped
with either one of two types of nosepieces. One of these is a
blunt-faced nose while the other is a hemispherical nose.
The model that was implemented provided freedom for
the flow arriving at the impact opening to follow its own
path without constraint.

It is found that the criterion for the breakdown of
the Bernoulli interpretation occurred at a value of
qU1Router/l = 45 for the hemispherical-nosed tube and
at qU1Router/l = 65 for the blunt-nosed tube. These crite-
ria correspond to a deviation of the pressure coefficient
cp of 2% from the standard Bernoulli result. This 2% devi-
ation of the pressure coefficient corresponds to a 1%
deviation in the velocity itself. The calculations for both
types of tubes were extended to values of qU1Router/
l = 10, at which point the pressure coefficient is approxi-
mately 1.1.

The streamline patterns adjacent to the nose of each of
the investigated tubes reveal the extent of the precursive
effect due to viscosity. The lower the Reynolds number,
the farther upstream did the precursive effect extend.
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